Kas ir līklīnijas trapece?
Līklīnijas trapece ir figūra, kuru ierobežo funkcija \(f(x)\), \(Ox\) ass un taisnes \(x=a\) un \(x=b\). Funkcija \(f(x)\) ir nepārtraukta un nenegatīva intervālā \([a;b].\)
Kā nosaka līklīnijas trapeces laukumu?
Noteiksim laukumu aptuveni.
1) Ar brīvi izraudzītiem punktiem intervālu \([a;b]\) sadala \(n\) vienāda garuma nogriežņos.
2) Caur dalījuma punktiem velk \(Oy\) asij paralēlas taisnes, līklīnijas trapeci sadalot \(n\) vertikālās joslās (skat zīm.).
3) Uz katra nogriežņa konstruējam taisnstūri tā, lai taisnstūra pamata mala ir vienāda ar attiecīgā nogriežņa garumu, bet augstums - ar funkcijas vērtību kādā brīvi izraudzītā nogriežņa punktā.
Iegūstam \(n\) taisnstūrus.
Atrodam katra taisnstūra laukumu:
kur .
Ja intervāls \([a;b]\) ir sadalīts \(n\) daļās, tad var pieņemt, ka taisnstūru laukumu summa aptuveni ir vienāda ar līklīnijas trapeces laukumu:
Šo summu var pierakstīt saīsināti, izmantojot grieķu alfabēta lielo burtu "sigma".
Ja intervāls \([a;b]\) ir sadalīts pietiekami mazās daļās, tad līklīnijas trapeces laukumu var aprēķināt ar formulu:
Atsauce:
Materiālu sagatavoja Mg. math. Laima Baltiņa