Pirms lasi uzdevumu, atkārto teoriju par riņķa līnijas vienādojumu.
Eksāmena parauguzdevums
Piemērs:
No riņķa līnijas krustpunktiem ar abscisu asi novilkti divi šīs riņķa līnijas rādiusi. Aprēķini leņķi starp tiem.
Risinājums
Atdala pilno kvadrātu, iegūst riņķa līnijas kanonisko vienādojumu:
Tātad riņķa līnijas centrs \(O(2;-3).\)
Rādiuss .
Aprēķina krustpunktu ar abscisu asi koordinātas.
Ja grafiks krusto \(Ox\) asi, tad \(y=0\).
Uzzīmējot doto situāciju, redzam, ka rādiusi un nogrieznis uz \(Ox\) ass veido vienādsānu trijstūri.
Uz \(Ox\) ass nogriežņa garums ir \(6\) vienības.
Pārbaudām ar Pitagora teorēmu, vai šis trijstūris ir taisnleņķa: vai hipotenūzas kvadrāts ir vienāds ar katešu kvadrātu summu?
Tātad trijstūris ir taisnleņķa, un rādiusi veido \(90°\) leņķi.
Tomēr tā bija nejaušība, ka leņķis ir \(90°\).
Vispārīgā gadījumā, lai noteiktu leņķi starp rādiusiem, varētu lietot kosinusu teorēmu. Varētu arī izmantot to, ka iegūtais trijstūris ir vienādsānu, novilkt tā augstumu un lietot sakarības taisnleņķa trijstūrī.
VISC piedāvātie vērtēšanas kritēriji eksāmenā
2 punkti | Nosaka rādiusu, izmantojot riņķa līnijas vienādojumu. Nosaka riņķa līnijas centra koordinātas, izmantojot riņķa līnijas vienādojumu. |
1 punkts | Aprēķina riņķa līnjas krustpunktu ar abscisu asi koordinātas. |
2 punkti | Aprēķina leņķi starp rādiusiem. |
ir/nav | Korekts matemātiskais pieraksts. |
Šī uzdevuma elementus vingrinies šeit: riņķa l. vienādojums. krustpunkti ar x asi, leņķis ar kosinusa teorēmu
Atsauce:
Materiālu sagatavoja Mg. math. Laima Baltiņa
VISC prezentācija (Aivars Ančupāns) 2022. nov.